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Unsteady expansion of an ideal gas into a vacuum 

By D. M. MOODY 
The Aerospace Corporation, Los Angeles, CA 90009, USA 

(Received 27 December 1988) 

The unsteady expansion of an ideal gas into a vacuum is studied in one-dimensional 
planar and spherical geometries. The free-molecular expansion of a Maxwell-dis- 
tributed gas is compared to the continuum expansion of a perfect gas with y = 5. 
Time histories of density, temperature, and wall pressure (i.e. pressure on a wall 
surface oriented normal to the flow) are given a t  four near-field locations, and the 
approach to far-field behaviour is illustrated. In the free-molecular limit, closed-form 
expressions for the wall pressure, translational temperature, and fluxes of 
momentum, kinetic energy, and thermal energy have been obtained in addition to 
previously published results for density and velocity. The density and dynamic 
fluxes are observed to decay more rapidly in the tails of continuum pulses than in 
free-molecular pulses. The reverse is true for wall pressure, which decays less rapidly 
in continuum flow. Translational temperature, in the free-molecular case, rises 
discontinuously upon pulse arrival, and, a t  long times approaches $ for planar flow 
and tends to zero for spherical flow. Continuum thermodynamic temperature pulses, 
on the other hand, rise and fall in simple relation to continuum density. The far-field 
peak wall pressure in both Knudsen-number limits is found to decrease in inverse (or 
inverse cubic) proportion to the distance from the initial planar (or spherical) region. 
This result for the spherical case is a t  odds with the experiments of Ahrens, Allen &, 
Kovach (1971) which indicate a more rapid ([-3*5) fall-off of peak overpressure with 
distance from a point source in a vacuum. 

1. Introduction 
The one-dimensional expansion of an ideal gas into a vacuum will be investigated 

in the free-molecular (infinite Knudsen number) and continuum (zero Knudsen 
number) limits. The gas is assumed to be initially a t  rest, uniform in temperature and 
density, and to occupy either the volume interior to a sphere of radius 1 or the volume 
between two parallel planes separated by 21. Suppose that at time zero the boundary 
of the initial region is removed. We desire the subsequent time history of density, 
temperature, and wall pressure at an observation point (field point) external to the 
initial region. The term ‘wall pressure’ is used here to mean the pressure exerted on 
a rigid wall oriented normal to the expanding flow at the field point. The density and 
temperature, however, are computed for a free field (i.e. no wall). 

In  the free-molecular limit, it is possible to obtain closed-form expressions for all 
flow variables of interest. Expressions for density and velocity in both geometries 
were given by Molmud (1960) and Narasimha (1962). The method formalized by the 
latter author is used in this paper to additionally evaluate wall pressure, translational 
temperature, and fluxes of momentum, kinetic energy, and thermal energy. 

Exact results from the continuum viewpoint are more difficult to come by, 
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although an analytical solution for the planar free-field problem appears in the classic 
monograph by Courant & Friedrichs (1948). Wall pressure following the reflected 
shock is not treated, however ; nor is the spherical problem which is analytically 
intractable in the continuum regime. Greenspan & Butler (1963) approximate the 
planar continuum flow field close to a wall for times immediately following shock 
reflection. The asymptotic behaviour of the flow in both geometries and in both 
Knudsen-number limits is discussed by Mirels & Mullen (1963), but they do not 
compare the free-molecular and continuum flows in the near field at early times. The 
asymptotic continuum solution is also discussed by Greifinger & Cole (1965). In this 
paper, the continuum equations are numerically integrated via the method of 
characteristics. This permits complete time behaviour of the near- and far-field 
continuum flow in both geometries to be compared to the closed-form free-molecular 
results. The approach of the continuum solution to a far-field limit (defined as the 
limit in which the pressure gradient vanishes) is also investigated. Comparison of the 
free-molecular and continuum propagation of the initial density discontinuity in a 
shock tube was made by Bienkowski (1965). 

This study has obvious application to space flight operations, e.g. prediction of the 
time history of forces produced on spacecraft surfaces as a result of pulsed propellant 
release. The results are also expected to be of use in providing bounding comparisons 
for Monte Carlo simulations of unsteady gas expansions into a vacuum. 

2. Calculations 
For times t < 0, an ideal gas is imagined to be confined in one of two initial 

geometries: either between two planes or within a sphere. With Cartesian axes 
(z,, x2, z3), let the planar boundaries lie a t  x1 = & I ,  and let the spherical boundary 
be centred at the origin and have radius 1 = ( x ? + ~ i + x $ .  In  both geometries, a 
vacuum will be assumed to exist exterior to the gas. The gas within this initial 
region is assumed to be macroscopically at rest and to be uniform in temperature 
T, and density p,,. The gas constant will be denoted by R and the specific heat ratio 

At time t = O ,  the boundary is removed, and the subsequent gas den- 
sity, temperature, velocity, and wall pressure are desired as functions of space and 
time. Time histories of the various quantities of interest for both planar and spherical 
flows are calculated at  four different locations (field points) on the z,-axis, specifi- 
cally: 5 = x,/Z = 2, 5, 10, and 20. The calculations are made from two diversely 
limiting viewpoints : the free-molecular and the continuum. 

by Y. 

2.1. The free molecular view 

In this view, the gas molecules are assumed to never collide as they travel from the 
initial region to the measurement location, i.e. the mean free path is infinite in 
comparison t o  any other length in the problem (infinite Knudsen number). The 
physics of this viewpoint and the analytical technique required for calculating the 
collisionless flow field have been treated thoroughly by Narasimha (1962). Therein it 
is shown from the Boltzmann equation, that the distribution function 

f(x, t ;  0 )  

of molecular velocities u is, in the absence of collisions, preserved on molecular paths 

x = x’+ vt, (1) 
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where x’ is the molecular position at t = 0. Thus, an initial velocity distribution 

remains unaltered at subsequent times ( t  > 0 ) ,  provided location and time (x, t )  are 
related by (1) ,  i.e. 

f(x,t; 0 )  = fo ( x’;- y ’ ) .  

Any macroscopic flow variable (9) is then expressed as an expectation value in the 
distribution f :  

The integral $d3x‘ extends over the volume occupied by the gas at t = 0, and the 
Jacobian, t-3, of the transformation arises from (1) .  

In the results which follow, the molecules are assumed to initially be Maxwell- 
distributed, i.e. 

(3) fo(x’;u) =fo(V 2 - - (iy - e -pov= , 

1 
where 212 = -$ [(x, - x;)2 + (x, - x;y + (x3 - X;y] 

1 
and P0=m. 

As mentioned previously, the measurement location is taken to lie on the xl-axis, 
i.e. x2 = x3 = 0. For the planar and spherical geometries considered, this obviously 
causes no loss of generality. 

2.1.1. Fundamental quantities 
According to (2), the density is computed as 

( P )  - 1 ( p )  = - - sf. d3x’. 
Po 

(The tilde is used to denote normalized flow variables.) 
The x,-component of mass flux is 

The other two components of mass flux vanish by symmetry. 
The 2,-component of momentum flux transported along the x,-axis is 

(4) 

and the sum of the remaining two diagonal elements of the momentum flux tensor 
is 

( p w i + p w ~ )  - 2 ~ / ( w i + v ~ )  fOd3x’, (7) 
Po 

< E ? z + F 3 3 )  = 

while all off-diagonal elements, e.g. (p12), vanish by symmetry. 
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The x,-component of kinetic energy flux is 

Again, the x2- and x3-components vanish. 

2.1.2. Derived quantities 
Considering the quantities given by (4)-(8) as fundamental, it is possible to derive 

from them additional flow variables of interest. For example, the x,-component of 
flow velocity is 

Translational temperature is given by 

( G l )  = A<v,> = <@,>/<p>. 

S$T,, = t ( c  ’ c), 

(9) 

where c = u - ( u )  

is the so-called thermal or peculiar velocity. Thus 

gRq, = i((v2) - ( 0 )  * ( u ) ) .  

Expressing the velocity variance in terms of fundamental quantities, and normalizing 
with RT, = l/2p0 gives 

The pressure exerted on a specularly reflecting wall surface which is oriented normal 
to the flow velocity is equal to  twice the normal momentum flux: 

(2%) = QQ Po = 2(P11). 

The 2,-component of thermal energy flux which is associated with the three 
translational degrees of freedom may be expressed in terms of the fundamental 
quantities as 

Finally, if each internal degree of freedom is assumed to transport $qnt of thermal 
energy, then the total (kinetic plus thermal) energy flux is 

Here z is the total number of molecular degrees of freedom and Tint is some ‘internal 
temperature ’ which is not necessarily equal to the translational temperature (see, for 
example, Bird 1976). 

Narasimha (1962) has given an alternative derivation of higher moments of the 
distribution function in terms of derivatives of lower moments. 
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2.1.3. Evaluation of the qmdratures 
Upon evaluation of the integrals in (4)-(81, over the planar initial region, the 
fundamental quantities for the Maxwell-distributed gas are found to be 

<P> = I,, ( M I )  = I,, <P,J = 1 3  (15a+) 

= I2 +I4, ( p 2 2  +P33) = 211, ( 1 5 4  e)  

where 

I ,  = 

and m = (5-1)/7, n = (6+1)/7; 

and the dimensionless position 5 and dimensionless time 7 are defined by 

5 = XJl, 7 = t / l &  (17) 
For the spherical initial region, the fundamental quantities are found to be 

( p " )  = I I - L ~ ,  (Mi) = Iz-Lz, <pi,) = I3-L3, (18a-c) 

(R,) = 12+14-L2-L4, (P22+F33) = 2(I,-L,-L5), ( 1 8 4  e )  

where the functions Ii(i  = 1,2,3,4) are given by (16) and the functions L,(i = 
1,2, . . . , 5 )  are each of the form : 

Li = 4 exp [ - (T)] [at sinh ($) -pi cosh ($)I, 
X'i 

where 
7 p, = 0, 

a1 = E' 
7 2  

2E2 
a2 = 1+-, 

1 
P 2  = 5' 

4 27 p =-f--, 
7 5, 

2 r3 27 25 

57 c3 5 7 

3 T2 E2 3 1 2 35 1 
7 5 2  7, 2 252 

a3 = -+-+-+--, 

a4 = ,+-+-+-+--, p4 = g + - p - + ~ ,  

73 

a5 = -@' 
7 p - _ -  

5 - 5 2 .  

The results (15a, b)  and (18a, b)  were given by Narasimha (1962)t, but the higher 
moments for momentum flux and kinetic energy flux in (15c, d,  e )  and (18c, d ,  e )  have 
apparently not been published previously. The evaluation of the quadratures is 
straightforward, although cumbersome. 

t When (18a, b) and (19) are substituted into (9), the flow velocity in spherical geometry is found 
to be 

(6  ) - - L s i n h ( $ ) e x p (  &(p") -y){icoth(:)-&}. 

This reveals an error in the last term of Narasimha's (1962) second of equations (3.14). 
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The axisymmetric unsteady expansion of a monatomic gas into vacuum was 
analysed via the Boltzmann equation in the limit of small source Knudsen number 
by Freeman & Grundy (1968). A solution for Maxwellian molecules, valid for large 
time, was constructed. This asymptotic solution was shown to match the collisionless 
solution (preservation of the Maxwell distribution) except in the region near the 
expansion front. The same analysis, applied to the unsteady spherically symmetric 
expansion, was given by Grundy & Thomas (1969). 

The first exact solution of the Boltzmann equation with non-vanishing collision 
integral was discovered by Krook & Wu (1976), and the existence of additional 
similarity solutions was investigated by Tenti & Hui (1978). Rather than attempting 
to incorporate collisions in the Boltzmann equation, let us now abandon the 
particulate view of the gas altogether and analyse the gas motion in the continuum 
model. 

2.2. The continuum view 

In  this view, the molecular mean free path is vanishingly small in comparison to any 
other length in the problem (zero Knudsen number). The gas, as it expands, may 
therefore be assumed to remain a t  all times a system describable by equilibrium 
thermodynamics and continuum conservation laws. We then have the problem of 
rarefaction waves emanating from either two planes or a spherical surface and 
terminating in a vacuum. As discussed previously, analytical progress is now more 
difficult, especially for the spherical problem. Therefore, the approach taken here is 
to obtain the complete time behaviour by numerically integrating the continuum 
equations via the method of characteristics. 

The continuity equation is 

ap i a 
--+--(4pu1) = 0, 
at 4axl 

wherej = 0 o r j  = 2 for the planar or spherical problem, respectively. The continuum 
density is denoted by p,  and u1 is the continuum velocity component in the xl- 
direction. Conservation of momentum in both geometries is expressed by 

au, au, i ap 
-+,a1-+--= 0,  
at ax, Pax, 

where p is the continuum pressure. Since the gas expands into a vacuum, shock 
waves cannot form, and all gradients will decrease with time. The entire flow field is 
therefore uniform in entropy (homentropic) at all times. Casting the above two 
equations into characteristic form, (see, for example, Whitham 1974), and using the 
homentropic ideal-gas state relations to eliminate pressure and density in favour of 
continuum sound speed gives 

on characteristics 

where 
continuum sound speed and flow velocity are 

and 7 are the dimensionless length and time, defined in (17) .  The normalized 
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FIGURE 1. Wave diagram for continuum planar flow with y = %. Expansion propagates with 
speed a, into the undisturbed region and terminates in a vacuum along x1 = 1+2a,t/(y- 1). 

the characteristic operators are 

and the Riemann variables are 

The characteristics for the planar problem with y = 3 are shown schematically on 
the wave diagram in figure 1. (The actual computational mesh was much more 
dense.) The front of the expansion wave propagates from the boundary at  E = 1 into 
the undisturbed region a t  the sound speed a, in that region. The wave terminates in 
vacuum along the characteristic 

2 a,t 
E =  1f-T 

which, as discussed by Greenspan & Butler (1963), is also the terminating 
characteristic for the spherical problem. The indicated simple region is affected only 
by the expansion which originates from E = 1, while the interaction region is 
influenced by the expansions from both E = 1 and 6 = - 1.  

After integrating (22) along the characteristics to obtain the fundamental 
variables .22 and a", all other quantities of interest are easily determined. The 
continuum density and temperature (cf. (4) and (11)) follow from the homentropic 
relations : 
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The normalized fluxes of mass, momentum, and energy are 

where e is the specific internal energy of the gas. These flux expressions are the 
continuum counterparts of (5 ) ,  (6), and (14). 

If a wall is placed normal to the expanding flow, a shock wave will reflect from it. 
The shock propagates against $he flow and brings it to  rest. With the unshocked 
homentropic flow determined by the method of characteristics, the shocked flow is 
determined by ideal-gas shock jump conditions. Since the shock wave propagates 
into a non-uniform field, its velocity continuously changes, and its distance from the 
wall is therefore computed numerically by a simple first-order time integral of its 
instantaneous velocity. Conditions a t  the wall (xl) are then related to those 
immediately following the shook (at  xs) by a time delay of At = (xl-~,) /u2,  where u2 
is the shocked sound speed, Specifically, the wall pressure is given by 

13;w(z1, t) = p, = py+Fll 1 +- , 
Pa ( 3 

where the quantities on the right-hand side of the above equation are unshocked 
values a t  shock position xs and time t-At. The shock wave speed c, (measured 
relative to the wall) is given by 

5 u1 = "([(&)"(3+5L]+1]t-1}. 4 

I n  the above equation, the Mach number of the unshocked flow may be equivalently 
expressed as 

The wall pressure given by (29) will be compared to the free-molecular pressure given 
by (12). 

3. Comparisons 
Results of the continuum calculations for y = g are now compared to the free- 

molecular results for the Maxwell-distributed gas. 
Figure 2 shows density time history in the two limits (see (4) and (24)). Note that 

the results are plotted against 7/5 = t/(xl A) rather than 7 = t/(ZA). Displayed in this 
way, one sees from figure 2(b) that the peak density in spherical flow occurs a t  
7/5 w 0.8 for all four values of 6. Also, the shapes of the pulses are similar when 
plotted in this way. This is expected since, in the limit 5 = xl/Z + a, the only length 
with which to  non-dimensionalize time is zl. In  this far-field limit then, the flow must 
depend on the ratio tlx,, not on t and x1 individually; i.e. the flow becomes self- 
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T I 4  

FIGURE 2. Density time history at E = 2, 5, 10, and 20 for (a) one-dimensional planar and 
spherical flow. The free-molecular limit is shown by dashed lines, and the solid lines represent 
continuum limit with y = %. 

(6) 
the 

similar (see, for example, Sedov 1959 or Zel'dovich & Raizer 1966). Figure 2 (a) shows 
that the planar free-molecular flow is also self-similar for the displayed range of 5 
from 2 to 20, but that the planar continuum flow has not yet attained this nature. 

An additional insight into the asymptotic approach of the continuum solution to 
a far-field limit is gained by noting that the pressure gradient in the momentum 
equation (21) vanishes in this limit. This being the case, integration of the equation 
in this limit implies 

u1 + xl/t as x1 -+ 00 

so long as x,/t is held constant. Normalizing with a, and 1, one may write the above 
as 

uJa,+q as 6 = x,/E+ 00, 

where 7 = xl/a,t is held constant as 5 increases. Or, equivalently 

where 
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5 
FIQURE 3. Asymptotic approach of the continuum solution to the far-field limit. As 6 vanishes, 

the flow at 7 = x,/a,t = 1 attains a limiting velocity of a,. 

0 

5 = 2  

10-J t I I I I 

0 4 
715 

FIQURE 4. Temperature time history at 5 = 2, 6, 10, and 20 for (a) one-dimensional planar and ( b )  
spherical flow. The free-molecular limit is shown by dashed lines, and the solid lines represent the 
continuum limit with y = %. 
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The behaviour of q5(6; 7 = 1) is shown in figure 3. This function should vanish in the 
far-field. In  spherical flow, q5 = 0.05 a t  E = 4, but for planar flow q5 does not decrease 
to this level until E = 30. Likewise, q5 decreases to 0.01 a t  E = 20 for the spherical 
case, in contrast to x 300 for the planar geometry. Approach to far-field behaviour 
is thus seen to be much more rapid in spherical flow than it is in planar flow. 

The continuum density time history in plane geometry (figure 2a) shows a distinct 
slope discontinuity a t  roughly r/E = 1. This point marks the arrival of the expansion 
wave from 6 = - 1 ; i.e. this is the end of the simple region and the beginning of the 
wave interaction region (see figure 1). The free-molecular density, of course, shows no 
such wave-like behaviour. In both geometries, it  is apparent that the density decays 
more rapidly in the tail of the continuum pulse than it does in the free-molecular 
pulse. The pulse shapes are, however, qualitatively similar in both flow regimes. 

Figure 4 shows temperature time history in the two limits (see (1 1) and (25)). These 
comparisons point out a fundamental difference between the two flow regimes. 

In  the microscopic, free-molecular viewpoint, the translational temperature qr is 
essentially a measure of the variance of the molecular velocity distribution (see (10)). 
Thus, qr jumps discontinuously upon the arrival of any number of molecules, 
however small, provided they are distributed in velocity (see figure 4). For large 
values of 7/5, the translational temperature tends to $ for planar flow and to zero for 
spherical flow. These tendencies are explained as follows. At long times, we are 
selecting only the very slowest molecules in the x,-component of velocity from the 
Maxwell distribution. However, the transverse velocity components in the planar 
case are totally unrestricted. The full spectrum of x2- and s,-component velocities are 
observed at all times since the initial region is of infinite extent in those directions. 
That is, carriers of very large transverse velocity came from initial positions which 
were very distant from the xl-axis, and those with small transverse velocity came 
from positions close to the 2,-axis. Although the mean of each transverse velocity 
component vanishes, the mean square does not, and each mean square contributes 
5 to the translational temperature. In  spherical geometry, selection of slowly 
travelling molecules in the x,-direction simultaneously limits the spectrum of 
transverse velocities that will be observed. This is due to the finite extent of the 
initial region. Those carriers arriving with the largest transverse velocities came from 
initial positions that were only one sphere radius 1 distant from the x,-axis. At large 
distances, where the spherical initial region may be considered a point source, only 
one velocity class may reach the field point at any given time. In this limit then, the 
variance (and thus the translational temperature) vanishes. 

In  contrast to free-molecular flow, continuum temperature in the homentropic 
flow of an ideal gas is purely a function of density (equation (25)). Thus, for example, 
the maxima in continuum temperature (see figure 4) coincide with the maxima in 
continuum density (figure 2) and p-+O as + O .  

I n  summary, translational temperature in the free-molecular model is related to an 
underlying microscopic motion of gas molecules. By contrast, thermodynamic 
temperature in the continuum model is a variable of state, defined in general as a 
function of three other state variables : internal energy, entropy, and density : 

This definition does not explicitly involve the macroscopic flow velocity, ul. 
Furthermore, in the continuum flows considered here, the gas is calorically perfect 
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FIGURE 5.  Wall pressure time history a t  6 = 2, 5 ,  10, and 20 for (a) one-dimensional planar and ( b )  
spherical flow. The free-molecular limit is shown by dashed lines, and the solid lines represent the 
continuum limit with y = 1. 

and homentropic. The thermodynamic temperature thus reduces to a function of 
density alone. 

Although not shown, the time histories of the fluxes of mass, momentum, and 
energy have the same qualitative appearance as the density itself (figure 2). 

Figure 5 compares the free-molecular wall pressure (17,) given in (12) with the 
continuum wall pressure 17, of (29). Generally speaking, the continuum peaks are 
higher and occur later than the free-molecular peaks. Also, there is a less rapid decay 
in the tail of the continuum pulse than in the free-molecular pulse. This is opposite 
to the behaviour of the density pulses. 

In  the far field (say 6 > 20), the following scaling relations for the planar free- 
molecular flow are numerically deduced : 

(j5max) = 1.856-' at (7/5)max = 0.82 

and (47) = 2.26, 

where (j5max) is the peak wall pressure, ( T / E ) ~ ~ ~  is its time of occurrence, and (I"> is 
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the impulse (time integral) of the pressure. Similarly, for the spherical free-molecular 
flow 

(jjmax) = 2.44c-3 at (7/Efrnax = 0.63 

and (f) = 1.505-*. 

In the continuum limit, the same peak pressure versus distance relations prevail in 
the far field; i.e. jj,,, - E-( j+ ' )  for the planar ( j  = 0) and spherical ( j  = 2) cases. This 
may be deduced from (29) and the fact that, in the far field, the velocity u1 
approaches the limit of x l / t .  The Mach number therefore grows infinitely large as the 
density and thus sound speed vanish. The ratio c,/ul therefore approaches a limiting 
constant value which depends only on y (see (30)). The wall pressure thus depends 
on density as p ,  - p"Y+ const p". 

Since y > 1, and the density decreases in inverse (or inverse cubic) proportion to 
distance for the planar (or spherical) expansion, it follows that 

represents the dominant far-field behaviour of the peak wall pressure. 
The wall pressure p ,  is the quantity of most immediate interest in application. It 

is also the quantity which is most readily measurable by experiment. 
In the experiments of Ahrens, Allen & Kovach (1971), high-explosive pellets were 

detonated in a vacuum tank, and peak wall pressures were found to decrease as (-3.5 

rather than as [i3. There are several possible reasons for the disagreement between 
these experiments and the current calculations. In the first place, the gas cloud of 
products following the detonation of the solid phase explosive certainly does not 
have the same simple uniform initial conditions as considered in this paper. Secondly, 
and most importantly, the measurements were made at  distances ranging from 28 to 
409 solid-phase radii. It is not clear that this range lay in the far field of the gas phase. 
As discussed above, the inverse cubic fall-off of peak pressure with distance is only 
dominant at distances so large that the flow velocity has reached its vacuum-limiting 
value. Finally, if the measurements were in the gas near field, non-ideal behaviour of 
the products and radiation could help to explain the more rapid fall-off. Apparently, 
no data exist for the theoretically simpler problem considered in this paper. 

4. Summary 
The planar and spherical one-dimensional unsteady expansion of an ideal gas into 

a vacuum has been studied in the free-molecular and continuum limiting viewpoints. 
Complete time behaviour of density, temperature, and wall pressure, in both 
Knudsen-number limits has been given at four near-field locations, and the approach 
of the continuum flow to far-field behaviour has been illustrated. 

Density and dynamic fluxes are observed to decay more rapidly in the tails of 
continuum pulses than in free-molecular pulses. The reverse is true for wall pressure, 
which decays less rapidly in continuum flow. Translational temperature in the free- 
molecular case jumps discontinuously at  the leading edge of the pulse and then tends 
asymptotically in time to either 5 or zero for the planar or spherical expansion, 
respectively. Continuum temperature, on the other hand, is related simply to  
density. 

Closed-form expressions for free-molecular wall pressure, translational tem- 
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perature, and fluxes of momentum and energy have been obtained in addition to 
previously published results for density and mass flux. 

Peak wall pressure in both Knudsen-number limits is found, in the far-field limit, 
to decrease in inverse (or inverse cubic) proportion to the distance from the initial 
planar (or spherical) region. This is a t  odds with the experiments of Ahrens et al. 
(1971) which indicate a more rapid (5-3.5 as opposed to 5-3) fall-off of peak 
overpressure with distance from a high-explosive pellet in vacuum. The reasons for 
this difference most likely stem from non-uniform gas initial conditions, and the 
measurements having been made in the near field of the gaseous detonation products. 

Finally, the results presented here are expected to be of use in providing bounding 
comparisons for Monte Carlo simulations of unsteady gas expansions into vacuum. 

The author thanks Dr R. L. Baker for many helpful discussions. This work was 
supported by the Space Division, US Air Force Systems Command under Contract 
no. PO470 1-87 -C-0088. 
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